Convert the following from rectangular to polar Identify the
Solution
a).
point(-6,6)
in polar x=rcos(theta) =-6
y=rsin(theta) = 6
sin(theta)/cos(theta) = 6/-6
tan(theta) =6/-6 =-1
so theta = 135 degree or 3pi/4
r = sqrt(6^2 +6^2) = sqrt(36+36)
r = sqrt(72)
r = 6sqrt(2)
(r,theta) = (6sqrt(2) , 3pi/4)
b).
(7,-7sqrt(3) )
tan(theta) = -7sqrt(3)/7
tan(theta) = -sqrt(3)
theta = 2pi - pi/3 (since \'x\' co ordinate is positive)
theta = 5pi/3
r = sqrt(7^2 +(7sqrt(3)^2 )
r= sqrt(49 +49*3)
r = 14
(r,theta) = (14 , 5pi/3)
c).
x^2 +y^2 -4x +16y =0
x^2 -4x +4 +y^2 +16y +64 = 4+64
(x-2)^2 + (y+8)^2 = 68
this is curve represents a circle with radius = sqrt(68)
center (2,-8)
to convert it polar plug x=rcos(theta) y =rsin(theta)
r^2 cos^2(theta) +r^2 sin^2(theta) -4rcos(theta) +16rsin(theta) =0
r^2 [ cos^2(theta) +sin^2(theta) - 4rcos(theta) +16rsin(theta) =0
r^2 -4rcos(theta) +16rsin(theta) =0

