Solve the equation log4 x 4 log4 x 10 2 log23x 2 log2x

Solve the equation. log_4 (x - 4) + log_4 (x - 10) = 2 log_2(3x - 2) - log_2(x - 5) = 4

Solution

log4(x-4) + log4(x-10)=2

log4(x-4) + log4(x-10)=2 log44 (since log44=1)

log4(x-4)(x-10)= log 442

log4(x-4)(x-10)=log416

(x-4)(x-10)=16

x^2-14x+40-16=0

x2-14x+24=0

(x-12)(x-2)=0

x=12,2

ignoring x=2 ,since on using x=2 we get negative log value and log cant take negative values

therefore x=12 is the answer.

2. log2(3x-2) - log2(x-5)= 4

log 2((3x-2)/(x-5))=4 log22(since log 22=1)

log2((3x-2)/(x-5))= log 224

(3x-2)/(x-5)=16

3x-2=16(x-5)

3x-2=16x-80

-2+80=16x-3x

78=13x

x=6

log2((3x-2)/(x-5))=log216

 Solve the equation. log_4 (x - 4) + log_4 (x - 10) = 2 log_2(3x - 2) - log_2(x - 5) = 4Solutionlog4(x-4) + log4(x-10)=2 log4(x-4) + log4(x-10)=2 log44 (since l

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site