Solve the equation log4 x 4 log4 x 10 2 log23x 2 log2x
Solve the equation. log_4 (x - 4) + log_4 (x - 10) = 2 log_2(3x - 2) - log_2(x - 5) = 4
Solution
log4(x-4) + log4(x-10)=2
log4(x-4) + log4(x-10)=2 log44 (since log44=1)
log4(x-4)(x-10)= log 442
log4(x-4)(x-10)=log416
(x-4)(x-10)=16
x^2-14x+40-16=0
x2-14x+24=0
(x-12)(x-2)=0
x=12,2
ignoring x=2 ,since on using x=2 we get negative log value and log cant take negative values
therefore x=12 is the answer.
2. log2(3x-2) - log2(x-5)= 4
log 2((3x-2)/(x-5))=4 log22(since log 22=1)
log2((3x-2)/(x-5))= log 224
(3x-2)/(x-5)=16
3x-2=16(x-5)
3x-2=16x-80
-2+80=16x-3x
78=13x
x=6
log2((3x-2)/(x-5))=log216
