Write the partial fraction decomposition of the rational exp
Solution
given 3x^3 +2x^2 / (x^2 +5)^2
take x^2 common from numerator
3x^3 +2x^2 / (x^2 +5)^2 = x^2(3x+2) / (x^2+5)^2
3x^3 +2x^2 / (x^2 +5)^2 can be partial fraction into Ax +B / (x^2+5) + Cx+D /(x^2+5)^2 [ where A,B,C,D are any numbers]
x^2(3x+2) / (x^2+5)^2 = Ax +B / (x^2+5) + Cx+D /(x^2+5)^2
x^2(3x+2) / (X^2+5)^2 = [ (Ax+B)(x^2+5) + Cx+D ] / (x^2+5)^2
x^2(3x+2) = [ (Ax+B)(x^2+5) + Cx+D ]
3x^3 + 2x^2 = Ax^3+5Ax+Bx^2 +5B +Cx+D
3x^3 +2x^2 = Ax^3 +Bx^2 + x(5A+C)+5B+D
now comparing the coffients
A=3 (x^3 coffient)
B=2 (x^2 coffient)
5A+C=0 (x coffient)
5(3) +C=0
C= -15
5B+D=0 (constant)
5(2)+D=0
D= -10
x^2(3x+2) / (x^2+5)^2 = Ax +B / (x^2+5) + Cx+D /(x^2+5)^2
plug A,B,C,D values
x^2(3x+2) / (x^2+5)^2 = 3x +2 / (x^2+5) + -15x+-10 /(x^2+5)^2
So OPTION C is ANSWER
C--->ANSWER
