Solve the initialvalue problem y6y9y0 initial conditions y10

Solve the initial-value problem y\"+6y\'+9y=0 initial conditions y(1)=0 and y\'(1)=1

Solution

Given that y\"+6y\'+9y=0

The symbolic form is [D2 + 6D +9]y = 0

The auxiliary equation is

m2+6m+9 =0

(m+3)2 =0

m =-3,-3

Hence,

the complementary function is y = (c1+c2x)e-3x

Given that y(1)=0,

0 = (c1+c2.1)e-3.1

c1+c2 = 0

Also given that y\'(1)=1.

  y = (c1+c2x)e-3x = c1e-3x + c2xe-3x

y\' = c1.-3.e-3x + c2[ x.-3e-3x+ e-3x.1]

y\' = -3c1 e-3x -3c2 xe-3x+ c2 e-3x

Since c1+c2 =0, put c2=-c1 in above equation.

y\' = -3c1e-3x -3(-c1)xe-3x+ (-c1)e-3x

   y\' = -3c1e-3x +3c1xe-3x-c1e-3x

   y\' = 3c1 xe-3x - 4c1 e-3x

   y\'= c1[3xe-3x- 4e-3x]

Now apply, y\'(1)=1

1 = c1[3.1.e-3.1-4 e-3.1]

1 = c1[3e-3-4 e-3]

1 = -c1e-3

c1 = -e3

Then, c2 = -c1 = -[-e3] = e3

Hence, substitute c1 and c2 in y = (c1+c2x)e-3x

   Therefore,

y = ( -e3+ e3x)e-3x  

  

  

  

  

  

Solve the initial-value problem y\
Solve the initial-value problem y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site