Let u u x y exx cos y y sin y Show that u ux y is a harm

Let u = u (x, y) = e^x(x cos y - y sin y). Show that u = u(x, y) is a harmonic function. Find the harmonic conjugate of u = u(x, y) Write the analytic function f(z) = u(x, y) + v(x, y)i in the terms of z. we need to show that u_xx + u_yy = 0. So we have: u_x = partial differential u (x, y)/partial differential x = e^x (x cos y - y sin y) + e^x cos y implies u_xx = partial differential^2 u (x, y)/partial differential x^2 = e^x (x cos y - y sin y) + e^x cos y + e^x cos y u_y = partial differential u (x, y)/partial differential y = e^x (-x sin y - sin y - y cos y) implies u_yy = partial differential^2 u (x, y)/partial differential y^2 = e^x (-x cos y - cos y - cos y + y sin y) u_xx + u_yy = e^x (x cos y - y sin y) + e^x cos y + e^x cos y + e^x (-x cos y - cos y - cos y + y sin y) = e^x (x cos y - y sin y + cos y + cos y - x cos y - cos y - cos y + y sin y) = 0

Solution

Solution :

Given,
u = ex(xcosy - ysiny)

( a )

u = (ex.x.cosy - ex.y.siny) -------------( 1 )

Here du/dx means partial differentiation of u with respect to \' x \'

diff 1 w.r.t \' x \' we get,

du/dx = cosy(ex.1 + x.ex) - y.siny.(ex)

du/dx = ex.cosy + x.ex.cosy - ex.y.siny ---------------- ( 2 )

diff 2 again w.r.t x we get,

d2u/dx2 = cosy.(ex) + cosy(ex.1 + x.ex)...

d2u/dx2 = ex.cosy + ex.cosy + x.ex.cosy...

d2u/dx2 = 2.ex.cosy + x.ex.cosy - y.ex....

Now diff 1 again w.r.t y we get,

du/dy = ex.x.(-siny) - ex(y.cosy + siny.1)

du/dy = - x.ex.siny - y.ex.cosy - ex.siny....

Now diff 4 w.r.t y again we get,

d2u/dy2 = - x.ex.(cosy) - ex(y.( - siny) +...

d2u/dy2 = - x.ex.cosy + y.ex.siny - ex...

d2u/dy2 = - x.ex.cosy + y.ex.siny - 2.ex....

Now a function is said to be harmonic if ,

d2u/dx2 + d2u/dy2 = 0

Now adding we get,

(2.ex.cosy + x.ex.cosy - y.ex.siny) + ( - 2...

since both cancel out each other thereby giving zero thus u = u(x, y) is a harmonic function.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------

( b )

let us consider cauchy - riemann equation which is given by,

du/dx = dv/dy and dv/dx = - du/dy

since we are having the real part let us find the imaginary part,

dv/dy = ex(cosy + xcosy - ysiny)

dv = ex(cosy + xcosy - ysiny).dy

Now integrating we get,

INT(dv) = ex[ INT(cosy)dy + x.INT(cosy)dy - INT(ysiny)dy ] + f(x)   here INT = INTEGRATION

v = ex.(siny + xsiny + ycosy - siny) + f(x)

v = x.ex.siny + ex.y.cosy + f(x)

Now,

dv/dx = ex(x.siny + y.cosy + siny)

dv = ex(x.siny + y.cosy + siny).dx

Integrating we get,

INT(dv) = siny.INT(x.ex)dx + y.cosy.INT(ex)dx + siny...

v = x.ex.siny + ex.y.cosy + g(y)----------...

Now Comparing the value of f(x)and g(y) are,

f(x) = 0 and g(x) = 0,

So therefore,

v = x.ex.siny + ex.y.cosy

v = ex.(x.siny + y.cosy)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

( c )

Let us consider,

f(z) = u + iv

f(z) = ex.(x.cosy - y.siny) + i.ex.(x.siny + y.cosy...

Putting x = z and y = 0 in above equation.

f(z) = ez.(z.cos0 - 0.sin0) + i.ez(zsin0 + 0...

Now cos0 = 1 and sin0 = 0 so therefore,

f(z) = z.ez

 Let u = u (x, y) = e^x(x cos y - y sin y). Show that u = u(x, y) is a harmonic function. Find the harmonic conjugate of u = u(x, y) Write the analytic function
 Let u = u (x, y) = e^x(x cos y - y sin y). Show that u = u(x, y) is a harmonic function. Find the harmonic conjugate of u = u(x, y) Write the analytic function
 Let u = u (x, y) = e^x(x cos y - y sin y). Show that u = u(x, y) is a harmonic function. Find the harmonic conjugate of u = u(x, y) Write the analytic function

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site