Complete Logic Table FALSE TRUE FALSE FALSE TRUE FALSE TRUE
Solution
&& : AND operator give true when both are true
|| : OR Operator results either of the one is true or both true.
^ : XOR operator results true if one is true and another is false
In below table i just used F in place of FALSE and T in place of TRUE just to compact the table
P
S
P&S
P||S
P^S
(P&S)||(P||S)
!S||FALSE|| !P
FALSE
TRUE
F && T = F
F || T = T
F^T = T
(F&&T)||(F||T)=
F||T= T
!T ||FALSE|| !F=
F||FALSE|| T = T
FALSE
FALSE
F && F = F
F||F = F
F^F = F
(F&&F)||(F||F)=
F||F = F
!F ||FALSE|| !F =
T || FALSE||T = T
TRUE
FALSE
T && F = F
T||F = T
T^F = T
(T&&F)||(T||F)=
F||T = T
!F || FALSE || !T =
T || FALSE|| F = t
TRUE
TRUE
T&&T = T
T||T = T
T^T = F
(T&&T)||(T||T)=
T||T = T
!T||FALSE||!T=
F || FALSE || F= F
| P | S | P&S | P||S | P^S | (P&S)||(P||S) | !S||FALSE|| !P |
| FALSE | TRUE | F && T = F | F || T = T | F^T = T | (F&&T)||(F||T)= F||T= T | !T ||FALSE|| !F= F||FALSE|| T = T |
| FALSE | FALSE | F && F = F | F||F = F | F^F = F | (F&&F)||(F||F)= F||F = F | !F ||FALSE|| !F = T || FALSE||T = T |
| TRUE | FALSE | T && F = F | T||F = T | T^F = T | (T&&F)||(T||F)= F||T = T | !F || FALSE || !T = T || FALSE|| F = t |
| TRUE | TRUE | T&&T = T | T||T = T | T^T = F | (T&&T)||(T||T)= T||T = T | !T||FALSE||!T= F || FALSE || F= F |

