Please Help Thanks Look at the course syllabus at the gradin
Please Help, Thanks
Look at the course syllabus at the grading scale. Create a script that calls for the user to input an overall score (i.e., a 93); the script needs to return the letter grade. Be sure to account for rounding the score. b) Write a function file that accepts the coefficients a, b, c (for the quadratic equation). Set up a code that evaluates b^2 - 4ac to determine if it will return a real value. If b^2 - 4ac is negative, display an error that tells the user that the squareroot is imaginary and abort the rest of the program. If b^2 - 4ac is zero or positive, calculate the squareroots and display them. Test your code on the following quadratic equations: x^2 - x + 12 4x^2 + 13x - 17 2x^2 - 4x + 2 c) Write a function file that determines the following sum (for all odd n from 1 to 11) using a for loop. The starting point, ending point, and increment should be input to the function file. y = sigma 2^n+2/n - 2 d) Repeat (c) using a while loop.Solution
(a)
function [grade]=Grades(marks)
marks
if(marks>100)
grade=\'Invalid\';
elseif(marks>=90)
grade=\'O\';
elseif(marks>=80)
grade=\'A\';
elseif(marks>=70)
grade=\'B\';
elseif(marks>=60)
grade=\'C\';
elseif(marks>=50)
grade=\'D\';
else
grade=\'F\';
end
end
OUTPUT:
>> Grades(62)
marks =
62
ans =
C
>> Grades(92)
marks =
92
ans =
O
>> Grades(72)
marks =
72
ans =
B
(b)
function [roots]=determinant(a,b,c)
det=(b^2-4*a*c);
if det<0
fprintf(\'The roots are imaginary.\ \');
else
roots(1)=(-b+sqrt(b^2-4*a*c))/(2*a);
roots(2)=(-b-sqrt(b^2-4*a*c))/(2*a);
end
end
Output:
>> determinant(1,-1,12)
The roots are imaginary.
>> determinant(4,13,-7)
ans =
0.4704 -3.7204
>> determinant(2,-4,2)
ans =
1 1
(c)
sum=0;
for n=1:2:11
a=(2^(n+2))/(n-2);
sum=sum+a
end

