12t1dydt 9y27t for t1 y05 solve the initial value problemSo
12(t+1)dy/dt - 9y=27t for t>-1, y(0)=5 solve the initial value problem
Solution
Divide all over by 12(t+1) :
dy/dt + (-3/4(t+1))*y = 9t/(4(t+1))
Integrating factor = e^(integral of (-3/4(t+1)*dt)
e^(-3/4*ln|t + 1|)
e^(ln|t + 1)|^(-3/4))
(t + 1)^(-3/4)
Multiply the DE by the untegrating factor :
(t + 1)^(-3/4) * [dy/dt + (-3/4(t+1))*y = 9t/(4(t+1))]
d/dt of (y * (t + 1)^(-3/4)) = 9t(t+1)^(-3/4) / (4(t+1))
Integrating both sides :
y * (t + 1)^(-3/4) = 3(3t + 4)/(t + 1)^(3/4) + C
y = 3(3t + 4) + C(t + 1)^(3/4)
y = C(t + 1)^(3/4) + 9t + 12
y(0) = 5 :
5 = C + 9(0) + 12
5 = C + 12
C = -7
So, solution, y = C(t + 1)^(3/4) + 9t + 12
becomes
y = -7(t + 1)^(3/4) + 9t + 12
