Solve using the method of undetermined coefficients yy2ye3xs
Solve using the method of undetermined coefficients: y\'\'-y\'-2y=e3xsin(2x)
Solution
Solution :
y\"- y\' - 2y = 0
 
 Characteristic equation is :
 
 m² - m - 2 = 0
 
 (m - 2)(m + 1) = 0
 
 m = - 1 or m = 2
 
 y(x) = Ae(- x) + Be(2x)
use parametric variation method to solve the particular solution,
 
 wronskeian determinant,
 
 |W| = |{{e(- x), e(2x)},{- e(- x), 2e(2x)}}|
 
 |W| = 3ex
 
 Particular solution is :
 
 y(x) = - y1  y2 r(x)/|W|dx + y2  y1 r(x)/|W|dx
 
 y(x) = - e(- x)  e(2x) (e(3x))sin(2x) / (3ex)dx + e(2x)  e(-x) (e(3x))sin(2x) /(3ex)dx
 
 y(x) = - e(- x)  1/3 e(4x)sin(2x) dx + e(2x)  1/3 ex sin(2x)dx
 
 y(x) = 1/30 e(3x)(cos(2x) - 2sin(2x)) + 1/15 e(3x)(sin(2x) - 2cos(2x))
 
 y(x) = - 1/10 e(3x)cos(2x)
General solution is :
 
 y(x) = y(x) homogen + y(x) particular
 
 y(x) = Ae(- x) + Be(2x) - 1/10 e(3x)cos(2x)
 
 Here A and B is an arbitrary constant...

