Solve using the method of undetermined coefficients yy2ye3xs
Solve using the method of undetermined coefficients: y\'\'-y\'-2y=e3xsin(2x)
Solution
Solution :
y\"- y\' - 2y = 0
Characteristic equation is :
m² - m - 2 = 0
(m - 2)(m + 1) = 0
m = - 1 or m = 2
y(x) = Ae(- x) + Be(2x)
use parametric variation method to solve the particular solution,
wronskeian determinant,
|W| = |{{e(- x), e(2x)},{- e(- x), 2e(2x)}}|
|W| = 3ex
Particular solution is :
y(x) = - y1 y2 r(x)/|W|dx + y2 y1 r(x)/|W|dx
y(x) = - e(- x) e(2x) (e(3x))sin(2x) / (3ex)dx + e(2x) e(-x) (e(3x))sin(2x) /(3ex)dx
y(x) = - e(- x) 1/3 e(4x)sin(2x) dx + e(2x) 1/3 ex sin(2x)dx
y(x) = 1/30 e(3x)(cos(2x) - 2sin(2x)) + 1/15 e(3x)(sin(2x) - 2cos(2x))
y(x) = - 1/10 e(3x)cos(2x)
General solution is :
y(x) = y(x) homogen + y(x) particular
y(x) = Ae(- x) + Be(2x) - 1/10 e(3x)cos(2x)
Here A and B is an arbitrary constant...
