1 The number of pages in a population is normally distribute
1) The number of pages in a population is normally distributed with a mean of 38.2 pages and a standard deviation of 5.1 pages.
A. If a single report is randomly selected, find the probability that it is more than 50 pages long?
B. If a sample of 10 reports are randomly selected, find the probability that their mean length is more than 50 pages long. (Use your calculator)
2) 5% of the customers with reservations at a restaruant don\'t show up. Use a normal distribution to approximate the probability that at least 20 customers won\'t show up from a random group of 200 reservations. (Use your calcuator)
Solution
1.
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    50      
 u = mean =    38.2      
           
 s = standard deviation =    5.1      
           
 Thus,          
           
 z = (x - u) / s =    2.31372549      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   2.31372549   ) =    0.010341392 [ANSWER]
b)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    50      
 u = mean =    38.2      
 n = sample size =    10      
 s = standard deviation =    5.1      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    7.316642429      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   7.316642429   ) =    1.27121*10^-13 [ANSWER]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

