limn 3rd root of n3an2bn3 root of n2n1SolutionLt ninfinity
lim(n->?) [3rd root of (n^3+an^2+bn+3) + root of (n^2+n+1)]
Solution
Lt n-->infinity {n^3+an^2+bn+3)^(1/3)/ (n^2+n+1)^(1/2)
=Lt n-->inf {(n^3+an^2+bn+3)^(1/3)}/{n^2+n+1)^(1/2) = lt {(n^3+an^2+bn+3)^(2/6)}/{n^2+n+1)^(3/6)}
=lt n--> inf{ [(n^3+an^2+bn+3)^2]/[n^2+n+1)^3]}^(1/6)= lt {[1 +a/n+b/n^2+3/n^3]}^2 /[1+1/n+1/n^2)^3}^(1/6)
= {(1+a*0+3*0)^2 / (1+0+0)^3}^(1/6)
= 1/1
=1
Therefore lt n--> inf{ [(n^3+an^2+bn+3)^2]/[n^2+n+1)^3]}^(1/6)= 1.
![lim(n->?) [3rd root of (n^3+an^2+bn+3) + root of (n^2+n+1)]SolutionLt n-->infinity {n^3+an^2+bn+3)^(1/3)/ (n^2+n+1)^(1/2) =Lt n-->inf {(n^3+an^2+bn+3)^ lim(n->?) [3rd root of (n^3+an^2+bn+3) + root of (n^2+n+1)]SolutionLt n-->infinity {n^3+an^2+bn+3)^(1/3)/ (n^2+n+1)^(1/2) =Lt n-->inf {(n^3+an^2+bn+3)^](/WebImages/18/limn-3rd-root-of-n3an2bn3-root-of-n2n1solutionlt-ninfinity-1034842-1761536792-0.webp)