Let z 5 i and w 5 6i Compute the following and express yo
Let
z = 5 + i
and
w = 5 6i.
Compute the following and express your answer in
a + bi
form.
| w/z |
Solution
z = 5 + i , w = 5 - 6i
w/z = (5 + i)/(5 - 6i)
Rationalize denominator i.e, Multiply and divide by (5 + 6i)
==> [(5 + i)/(5 - 6i)] [(5 + 6i)/(5 + 6i)]
==> [(5 + i)(5 + 6i)]/[ (52 - (6i)2] ; since (a - b)(a + b) = a2 - b2
==> [25 + 30i + 5i + 6i2] / [25 - 36i2] ; i2 = -1
==> [25 + 35i + 6(-1)] / [25 - 36(-1)]
==> (19 + 35i)/(25 + 36)
==> (19 + 35i)/61
==> (19/61) + (35/61)i
Hence w/z = (19/61) + (35/61)i
