Say we have a population distribution N4 From this populatio
Say we have a population distribution N(,4). From this population, we have a random sample of size 30 with sample mean being 2.19. Construct 90%, 95%, and 99% confidence intervals of . Compare the length of these intervals, tell me your conclusion.
Solution
Note: I assumed the second entry \"4\" is the variance, so I used standard deviation = 2.
a)
90% confidence:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    2.19          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    2          
 n = sample size =    30          
               
 Thus,              
 Margin of Error E =    0.600615624          
 Lower bound =    1.589384376          
 Upper bound =    2.790615624          
               
 Thus, the confidence interval is              
               
 (   1.589384376   ,   2.790615624   ) [ANSWER]
*******************
b)
95% confidence:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    2.19          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    2          
 n = sample size =    30          
               
 Thus,              
 Margin of Error E =    0.715677657          
 Lower bound =    1.474322343          
 Upper bound =    2.905677657          
               
 Thus, the confidence interval is              
               
 (   1.474322343   ,   2.905677657   ) [ANSWER]
*********************
c)
99% confidence:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    2.19          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    2          
 n = sample size =    30          
               
 Thus,              
 Margin of Error E =    0.940559876          
 Lower bound =    1.249440124          
 Upper bound =    3.130559876          
               
 Thus, the confidence interval is              
               
 (   1.249440124   ,   3.130559876   ) [ANSWER]
****************************
As we can see, the larger the confidence level, the wider the confidence interval.
Thus, larger confidence levels yield wider confidence intervals.


