Let vector u 0 1 4 0 vector v 0 0 0 1 and let W the subspa
Let vector u = [0 1 4 0], vector v = [0 0 0 1], and let W the subspace of R^4 spanned by{vector u, vector v}. Find a basis for W^
Solution
Let, x=[r s t u] be in W\'
SO, x.u=0
s+4t=0
s=-4t
x.v=0 which gives:u=0
x=[r -4t t 0]=r[ 1 0 0 0]+t[0 4 1 0]
Basis =
{(1,0,0,0),(0,4,1,0)}
![Let vector u = [0 1 4 0], vector v = [0 0 0 1], and let W the subspace of R^4 spanned by{vector u, vector v}. Find a basis for W^SolutionLet, x=[r s t u] be in Let vector u = [0 1 4 0], vector v = [0 0 0 1], and let W the subspace of R^4 spanned by{vector u, vector v}. Find a basis for W^SolutionLet, x=[r s t u] be in](/WebImages/18/let-vector-u-0-1-4-0-vector-v-0-0-0-1-and-let-w-the-subspa-1035298-1761537106-0.webp)