The lifetime of a light bulb in a certain application is nor
The lifetime of a light bulb in a certain application is normally distributed with a mean of 1,400 hours and standard deviation of 200 hours.
a ) What is the probability that a light bulb will last more than 1,800 hours?
b ) What lifetime is exceeded by 90% of light bulbs?
c ) What lifetime is exceeded by 20% of light bulbs?
d ) What is the probability that the lifetime of a light bulb is between 1,350 and 1,550 hours?
Solution
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    1800      
 u = mean =    1400      
           
 s = standard deviation =    200      
           
 Thus,          
           
 z = (x - u) / s =    2      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   2   ) =    0.022750132 [ANSWER]
*****************
B)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.1      
           
 Then, using table or technology,          
           
 z =    -1.281551566      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1400      
 z = the critical z score =    -1.281551566      
 s = standard deviation =    200      
           
 Then          
           
 x = critical value =    1143.689687   [answer]
**********************
c)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.8      
           
 Then, using table or technology,          
           
 z =    0.841621234      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1400      
 z = the critical z score =    0.841621234      
 s = standard deviation =    200      
           
 Then          
           
 x = critical value =    1568.324247   [ANSWER]
**********************
c)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    1350      
 x2 = upper bound =    1550      
 u = mean =    1400      
           
 s = standard deviation =    200      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.25      
 z2 = upper z score = (x2 - u) / s =    0.75      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.401293674      
 P(z < z2) =    0.773372648      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.372078973   [ANSWER]  
   
   


