Some Internet companies sell a service that will boost a web
Some Internet companies sell a service that will boost a website\'s traffic by delivering additional unique visitors. Assume that one such company claims it can deliver 800 visitors a day. If this amount of website traffic is experienced, then the time between visitors has a mean of 1.80 minutes (or 0.5556 per minute). Assume that a website gets 800 visitors a day and that the time between visitors has an exponential distribution.
 
 a. What is the probability that the time between two visitors is less than 2 minutes ?
 b. What is the probability that the time between two visitors is less than 3 minutes?
 c. What is the probability that the time between two visitors is more than 4 minutes?
Solution
a)
The mean of the distirbution is also the standard deviation, and is equal to 1/lambda:          
           
 mean = standard deviation = 1/lambda =    1.8      
           
 The left tailed area in an exponential distribution is          
           
 Area = 1 - e^(-lambda*x)          
           
 As          
           
 x = critical value =    2      
           
           
 Then          
           
 Area =    0.670807012   [ANSWER]
******************
b)
The left tailed area in an exponential distribution is          
           
 Area = 1 - e^(-lambda*x)          
           
 As          
           
 x = critical value =    3      
           
           
 Then          
           
 Area =    0.811124397   [ANSWER]
********************
c)
The right tailed area in an exponential distribution is          
           
 Area = e^(-lambda*x)          
           
 As          
           
 x = critical value =    4      
           
           
 Then          
           
 Area =    0.108368023   [ANSWER]  
   
   


