Let v1 12 23 23 01 v2 29 59 49 23 and v3 29 49 59 23 Find
     Let v_1 = [1/2  -2/3  -2/3  0/1], v_2 = [-2/9  -5/9  4/9  2/3], and v_3 = [-2/9  4/9  -5/9  2/3]. Find a vector v_4 in R^4 such that {v_1, v_2, v_3, v_4} is an orthonormat set.  ![Let v_1 = [1/2 -2/3 -2/3 0/1], v_2 = [-2/9 -5/9 4/9 2/3], and v_3 = [-2/9 4/9 -5/9 2/3]. Find a vector v_4 in R^4 such that {v_1, v_2, v_3, v_4} is an orthonor  Let v_1 = [1/2 -2/3 -2/3 0/1], v_2 = [-2/9 -5/9 4/9 2/3], and v_3 = [-2/9 4/9 -5/9 2/3]. Find a vector v_4 in R^4 such that {v_1, v_2, v_3, v_4} is an orthonor](/WebImages/18/let-v1-12-23-23-01-v2-29-59-49-23-and-v3-29-49-59-23-find-1035683-1761537342-0.webp) 
  
  Solution
Let v4 = { x, y, w , z}
v1.v4 = x/3 -2y/3 -2w/3 =0
v2.v4 = -2x/9 - 5y/9+ 4w/9 +2z/9 =0
v3.v4 = -2x/9 +4y/9 -5w/9 +2z/3 =0
we get : x-2y -2w =0 -----(1)
-2x -5y +4w +2z =0 -----(2)
-2x +4y -5w +2z =0 ------(3)
Let z = t be a free variable
x = 8z/9 ; y=2z/9 ; w = 2z/9 ;
x = 8t/9 ; y = 2t/9 ; w= 2t/9
Now v4 = { 8t/9 , 2t/9 , 2t/9 , t }
Now v4.v4 = 1
(8t/9)^2 + (2t/9)^2 + (2t/9)^2 + t^2 =1
t^2 [ 64/81 +4/81 + 4/81 +1]=1
t^2(153)/81 =1
t = +/- 9/3sqrt(17)
t = 3/sqrt(17) , -3/sqrt(17)
There are two choices for v4
v4 = { 8t/9 , 2t/9 , 2t/9 , t }
= { 8/3sqrt17 , 6/sqrt17 , 6 /sqrt17 , 3/sqrt17 }
OR
= { -8/3sqrt17 , -6/sqrt17 , -6 /sqrt17 , -3/sqrt17 }
![Let v_1 = [1/2 -2/3 -2/3 0/1], v_2 = [-2/9 -5/9 4/9 2/3], and v_3 = [-2/9 4/9 -5/9 2/3]. Find a vector v_4 in R^4 such that {v_1, v_2, v_3, v_4} is an orthonor  Let v_1 = [1/2 -2/3 -2/3 0/1], v_2 = [-2/9 -5/9 4/9 2/3], and v_3 = [-2/9 4/9 -5/9 2/3]. Find a vector v_4 in R^4 such that {v_1, v_2, v_3, v_4} is an orthonor](/WebImages/18/let-v1-12-23-23-01-v2-29-59-49-23-and-v3-29-49-59-23-find-1035683-1761537342-0.webp)
