Let X be a random variable with EX 1 and VarX 4 Let Y 2X
Let X be a random variable with E(X) = 1 and Var(X) = 4. Let Y = 2X + 7. Find E(Y) Find Var(Y) Find the standard deviation of X Find E(X^2) Find Cov(X, Y), where Cov denotes the covariance.
Solution
Since,
E(X) = 1
Var(X) = 4
and
Y = 2X + 7
Therefore,
(a) E(Y) = E(2X+7) = E(2X) + E(7) = 2E(X) + 7 = 2*1+7 = 2+7 = 9 Answer
(b) Var(Y) = Var(2X+7) = (22)Var(X) = 4 * Var(X) = 4 * 4 = 16 Answer
(c) Standard Deviation of X = Square root of Var(X) = Root(4) = 2 Answer
(d) E(X2) ,
Since, Var(X) = E(X2) - E2(X)
=> 4 = E(X2) - 12
=> 4 = E(X2) - 1
=> 4 + 1 = E(X2)
=> 5 = E(X2)
=> E(X2) = 5 Answer
XY = X*[2X+7] = 2X2+7X
(e) Cov(X,Y) = E(XY) - E(X)E(Y) = E(2X2+7X) - 1*9 (since E(X)=1,E(Y)=9)
= 2E(X2) + 7E(X) - 9 = 2*5 + 7*1 - 9 = 10 + 7 - 9 = 8
therefore, Cov(X,Y) = 8 Answer
