Find the roots of ht 27kt2 123t 28 The smaller root is Th

Find the roots of h(t) = (27kt)^2 - 123t + 28 The smaller root is The larger root is What positive value of k will result in exactly one real root?

Solution

h(t)=(27kt)2-123t +28

h(t)=729k2t2-123t +28

ax2 +bx +c =0 ==>x=[-b+(b2-4ac)]/(2a),x=[-b-(b2-4ac)]/(2a)

t =[123+((-123)2-4*729k2*28)]/(2*729k2),t =[123-((-123)2-4*729k2*28)]/(2*729k2)

t =[123+(15129-81648k2)]/(1458k2),t =[123-(15129-81648k2)]/(1458k2)

smaller root is [123-(15129-81648k2)]/(1458k2)

larger root is [123+(15129-81648k2)]/(1458k2)

one ral root when (15129-81648k2)=0

k2=15129/81648

k =41/(367)

k=0.43

 Find the roots of h(t) = (27kt)^2 - 123t + 28 The smaller root is The larger root is What positive value of k will result in exactly one real root?Solutionh(t)

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site