Find the roots of ht 27kt2 123t 28 The smaller root is Th
Find the roots of h(t) = (27kt)^2 - 123t + 28 The smaller root is The larger root is What positive value of k will result in exactly one real root?
Solution
h(t)=(27kt)2-123t +28
h(t)=729k2t2-123t +28
ax2 +bx +c =0 ==>x=[-b+(b2-4ac)]/(2a),x=[-b-(b2-4ac)]/(2a)
t =[123+((-123)2-4*729k2*28)]/(2*729k2),t =[123-((-123)2-4*729k2*28)]/(2*729k2)
t =[123+(15129-81648k2)]/(1458k2),t =[123-(15129-81648k2)]/(1458k2)
smaller root is [123-(15129-81648k2)]/(1458k2)
larger root is [123+(15129-81648k2)]/(1458k2)
one ral root when (15129-81648k2)=0
k2=15129/81648
k =41/(367)
k=0.43
