Solve the separable initial value problem dydx xx2 49 y2y0
Solve the separable initial value problem dy/dx = x/x^2 + 49 y^2,y(0) = 1 dy/dx = x/x^2 + 49 y^2,y(0) = 1
Solution
dy/dx = {x/(x^2 +49) }y^2 with y(0) = 1
separating the terms: dy/y^2 = (x/x^2 +49)dx
Integrating both sides\"
Integral of dy/y^2 = -1/y
Integral of (x/x^2 +49)dx , Let x^2 +49 = t
dt/dx = 2x ----> dt/2 = dx.x
So ,Integral of (x/x^2 +49)dx = Integral of dt/(2t)
= ln|t| /2 = {ln| x^2 +49|}/2
So, -1/y = {ln| x^2 +49|}/2 + lnC
use the intial value problem : y(0) =1 to find constant C
-1 = ln(42)/2 +C
C = -1 -ln(42)/2 = -2.868
So, -1/y = ln|x^2 +49| -2.868
