1 Suppose Z is the standardized normal random variable and Z
1. Suppose Z is the standardized normal random variable and Z~ N (0, 12). Please use z-table and show Step by Step to get the following probabilities.
a. P(Z < 1.66)=
b. P(Z > 1.23) =
c. If P(Z > a) = 0.9772, a =
d. P(Z>-1.44) =
e. P(-1.44< Z <1.66)=
f. P(1.23< Z<1.76) =
g. P(Z<1.36) + P(Z>1.36) =
Solution
Normal Distribution
 Mean ( u ) =0
 Standard Deviation ( sd )=12
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X < 1.66) = (1.66-0)/12
 = 1.66/12= 0.1383
 = P ( Z <0.1383) From Standard Normal Table
 = 0.555                  
 b)
 P(X > 1.23) = (1.23-0)/12
 = 1.23/12 = 0.1025
 = P ( Z >0.103) From Standard Normal Table
 = 0.4592                  
 c)
 P ( Z < x ) = 0.9772
 Value of z to the cumulative probability of 0.9772 from normal table is 1.999
 P( x-u/s.d < x - 0/12 ) = 0.9772
 That is, ( x - 0/12 ) = 2
 --> x = 2 * 12 + 0 = 23.988                  
 d)
 P(X > -1.44) = (-1.44-0)/12
 = -1.44/12 = -0.12
 = P ( Z >-0.12) From Standard Normal Table
 = 0.5478                  

