Find the equation for the plane passing through the points P
Find the equation for the plane passing through the points P1=(4, 5, 2), P2=(0, 9, 6), and P3=(9, 8, 0)
Solution
P1=(4, 5, 2), P2=(0, 9, 6), and P3=(9, 8, 0)
vector P1P2 = ( 0 - (-4) , -9 - (-5) , -6 - (-2) ) = ( 4 , -4 , -4)
vector P1P3 = ( -9 -(-4) , -8 - (-5) , 0- (-2) ) = ( -5 , -3 , 2)
cross product of P1P2 and P1P3 = ( 4 , -4 , -4) x ( -5 , -3 , 2) = (-20 , 12, -32 )
Equation of plane : ax +by +cz +d =0
-20x +12y -32z +d =0
plug (-4, -5 , -2) to find d:
-20*(-4) +12(-5) -32(-2) +d =0
80-60 +64 +d =0
d= -84
So, Equation of plane : -20x +12y -32z -84 =0
-5x +3y -8z -21 =0
