develop the estimated regression equation for these data Pro

develop the estimated regression equation for these data. Production Volume (units) Total Cost ($) 400 4000 450 5000 550 5400 600 5900 700 6400 750 7000

Solution

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Mean of X = X / n =    575
Mean of Y = Y / n =   5616.6667
(Xi - Mean)^2 =   93750
(Yi - Mean)^2 =   5648333.33
(Xi-Mean)*(Yi-Mean) =   712500
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 712500 / 93750 = 7.6  
bo = Y / n - b1 * X / n  
bo = 5616.6667 - 7.6*575 = 1246.6667  
  
Y = bo + b1 X  
  
Y\'=1246.6667+7.6*X  

Line of Regression Y on X i.e Y = bo + b1 X
Xi Yi (Xi - Mean)^2 (Yi - Mean)^2 (Xi-Mean)*(Yi-Mean)
400 4000 30625 2613611.2 282916.67
450 5000 15625 380277.82 77083.34
550 5400 625 46944.459 5416.67
600 5900 625 80277.759 7083.33
700 6400 15625 613611.06 97916.66
750 7000 30625 1913611 242083.33
develop the estimated regression equation for these data. Production Volume (units) Total Cost ($) 400 4000 450 5000 550 5400 600 5900 700 6400 750 7000Solution
develop the estimated regression equation for these data. Production Volume (units) Total Cost ($) 400 4000 450 5000 550 5400 600 5900 700 6400 750 7000Solution

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site