Suppose lim xn 7 and lim yn 7 and all yn 0 Determine the f
Suppose lim xn = 7 and lim yn = 7 and all yn=/ 0. Determine the following limits
(i) lim(xn + yn);
(ii) lim(3ynxn)/(yn^2) .
Solution
Given that
lim xn = 7 and lim yn = 7
1) lim(xn + yn) = lim xn + lim yn [ Since , limx->a [ f(x) + g(x) ] = limx->a [ f(x) ] + limx->a [ g(x) ]
= 7 + 7
= 14
Therefore ,
lim(xn + yn) = 14
2 ) lim(3ynxn)/((yn)2) = lim(3ynxn) / lim((yn)2) [ since , limx->a [f(x)/g(x)] = limx->a f(x)/limx->a g(x) ]
= [ lim(3yn) - lim(xn) ] / lim((yn)2 ) [limx->a [ f(x) - g(x) ] = limx->a f(x) - limx->a g(x) ]
= [ 3lim(yn) - lim(xn) ] / (lim(yn)2) [ limx->a [cf(x)] = c limx->af(x) , c = constant ]
= [ 3lim(yn) - lim(xn) ] / (lim(yn))2 [ limx->a [ f(x) ]n = [ limx->a f(x)]n , n = real number ]
= [ 3(7) - 7 ] / (7)2
= 14/49
= 2/7
Therefore ,
lim(3ynxn)/((yn)2) = 2/7
