Suppose lim xn 7 and lim yn 7 and all yn 0 Determine the f

Suppose lim xn = 7 and lim yn = 7 and all yn=/ 0. Determine the following limits

(i) lim(xn + yn);

(ii) lim(3ynxn)/(yn^2) .

Solution

Given that

lim xn = 7 and lim yn = 7

1) lim(xn + yn) =   lim xn + lim yn [ Since , limx->a [ f(x) + g(x) ] =  limx->a [ f(x) ] + limx->a [ g(x) ]

= 7 + 7

= 14

Therefore ,

lim(xn + yn) = 14

2 ) lim(3ynxn)/((yn)2) =  lim(3ynxn) / lim((yn)2) [ since , limx->a [f(x)/g(x)] = limx->a f(x)/limx->a g(x) ]

=  [ lim(3yn) - lim(xn) ] / lim((yn)2 ) [limx->a [ f(x) - g(x) ] =  limx->a  f(x) - limx->a g(x) ]  

= [ 3lim(yn) - lim(xn) ] / (lim(yn)2)    [ limx->a [cf(x)] = c limx->af(x) , c = constant ]

= [ 3lim(yn) - lim(xn) ] / (lim(yn))2 [ limx->a [ f(x) ]n = [ limx->a f(x)]n , n = real number ]

= [ 3(7) - 7 ] / (7)2   

= 14/49

= 2/7

Therefore ,

lim(3ynxn)/((yn)2) = 2/7

Suppose lim xn = 7 and lim yn = 7 and all yn=/ 0. Determine the following limits (i) lim(xn + yn); (ii) lim(3ynxn)/(yn^2) .SolutionGiven that lim xn = 7 and lim

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site