Tan theta4Squareroot 30 2 sin 3 theta10 3 sin2 theta10 sin2t
Solution
1)
a) tan(x/4) +sqrt3 =0
tan(x/4) = -sqrt3
tanx is -ve in IInd quadrant , and IVrt quadrant
x/4 = pi -pi/3 = 2pi/3
General solution : x/4 = k*pi +2pi/3
x = (8pi +12pi*k)/3
b) 2sin(3x) + 1 =0
sin(3x) = -1/2
General solution :3x = 7pi/6 +2k*pi
x =(7pi +12kpi)/18
3x = 11pi/6 +2k*pi
x =( 11pi + 12kpi)/18
c) 3sin3x -sinx =0
3*2sinxcosx -sinx =0
sinx( 6cosx - 1) =0
sinx = 0
General solution: x = 2kpi
cosx = 1/6
General solution:
x = 2k*pi - arcsin(1/6)
x = 2k*pi + arcsin(1/6)
x = 2k*pi +1.40335 ; x = 2k*pi - 1.40335
d) sin^2x = 4 -2cos^2x
sin^2x + 2cos^2x =4
sin^2x +cos^2x +cos^2x = 4
1 +cos^2x = 4
cos^2x = 3
cos2x = sqrt3 >1
As cosx is >1 .
So, no solution exists
2) cos^4x in terms of cosx
cos4x = 2cos^2(2x) -1
and we know cos2x = 2cos^2x -1
cos4x = 2cos^2(2x) -1
= 2 (2cos^2(x) - 1)^2 -1
= 2( 4cos^4x +1 - 4cos^2x) -1
= 8cos^4x +2 - 4cos^2x -1
= 8cos^4x - 4cos^2x + 1

