Mine1 8260 7830 8350 8070 8040 Mine2 7950 7890 7990 8140 792
Mine1= [8260 7830 8350 8070 8040]
Mine2= [7950 7890 7990 8140 7920 7240]
Find:
1) Use the level of significance alpha=0.05. Test whether there is a significant difference in heat-prodcuing capacity between the two mines. Assume the variances are equal between heat-producing capacity of two mines.
2) Use level of significance alpha= 0.05. Test the assumption of cariance equality.
Solution
1)
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   =   0  
 Ha:   u1 - u2   =/   0  
 At level of significance =    0.05          
 As we can see, this is a    two   tailed test.      
 Calculating the means of each group,              
               
 X1 =    8110          
 X2 =    7855          
               
 Calculating the standard deviations of each group,              
               
 s1 =    203.1009601          
 s2 =    313.7355574          
               
 Thus, the pooled standard deviation is given by              
               
 S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
               
 As n1 =    5   , n2 =    6  
               
 Then              
               
 S =    270.215963          
               
 Thus, the standard error of the difference is              
               
 Sd = S sqrt (1/n1 + 1/n2) =    163.6238912          
               
 As ud = the hypothesized difference between means =    0   , then      
               
 t = [X1 - X2 - ud]/Sd =    1.558452119          
               
 Getting the critical value using table/technology,              
 df = n1 + n2 - 2 =    9          
 tcrit =    +/-   1.833112933      
               
 Getting the p value using technology,              
               
 p =    0.076777406          
               
 Thus, as we see, comparing t and tcrit (or, comparing p and the significance level) we   FAIL TO REJECT THE NULL HYPOTHESIS.          
Thus, there is no significant evidence that the heat-producing capacity between the two mines are different. [CONCLUSION]
*********************************************
2.
Here,
s1 = 203.1009601
 s2 = 313.7355574
Formulating the null and alternative hypotheses,              
               
 Ho:   sigma1^2 / sigma2^2   =   1  
 Ha:    sigma1^2 / sigma2^2   =/   1  
               
 As we can see, this is a    two   tailed test.      
               
 Thus, getting the critical chi^2, as alpha =    0.05   ,      
 alpha/2 =    0.025          
 df1 = n1 - 1 =    4         
 df2 = n2 - 1 =    5          
 F (crit) =    0.1067866   and   7.387885751  
               
 Getting the test statistic, as              
 s1 =    203.1009601          
 s2 =    313.7355574          
               
 Thus, F = s1^2/s2^2 =    0.419079549          
               
 As F is between the two critical values, we FAIL TO REJECT THE NULL HYPOTHESIS.              
Thus, there is no significant evidence that the variances of the two mines are not equal. [CONCLUSION]
![Mine1= [8260 7830 8350 8070 8040] Mine2= [7950 7890 7990 8140 7920 7240] Find: 1) Use the level of significance alpha=0.05. Test whether there is a significant  Mine1= [8260 7830 8350 8070 8040] Mine2= [7950 7890 7990 8140 7920 7240] Find: 1) Use the level of significance alpha=0.05. Test whether there is a significant](/WebImages/18/mine1-8260-7830-8350-8070-8040-mine2-7950-7890-7990-8140-792-1037520-1761538536-0.webp)
![Mine1= [8260 7830 8350 8070 8040] Mine2= [7950 7890 7990 8140 7920 7240] Find: 1) Use the level of significance alpha=0.05. Test whether there is a significant  Mine1= [8260 7830 8350 8070 8040] Mine2= [7950 7890 7990 8140 7920 7240] Find: 1) Use the level of significance alpha=0.05. Test whether there is a significant](/WebImages/18/mine1-8260-7830-8350-8070-8040-mine2-7950-7890-7990-8140-792-1037520-1761538536-1.webp)
