The distribution of the number of viewers for the American I
The distribution of the number of viewers for the American Idol television show follows a normal distribution with a mean of 26 million with a standard deviation of 8 million.
Have between 30 and 37 million viewers? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
Have at least 21 million viewers? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
Exceed 49 million viewers? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
| The distribution of the number of viewers for the American Idol television show follows a normal distribution with a mean of 26 million with a standard deviation of 8 million. | 
Solution
A)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    30      
 x2 = upper bound =    37      
 u = mean =    26      
           
 s = standard deviation =    8      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    0.5      
 z2 = upper z score = (x2 - u) / s =    1.38      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.691462461      
 P(z < z2) =    0.916206678      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.224744216   [ANSWER]
*****************
B)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    21      
 u = mean =    26      
           
 s = standard deviation =    8      
           
 Thus,          
           
 z = (x - u) / s =    -0.63      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.63   ) =    0.735652708 [ANSWER]
*****************
c)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    49      
 u = mean =    26      
           
 s = standard deviation =    8      
           
 Thus,          
           
 z = (x - u) / s =    2.88      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   2.88   ) =    0.001988376 [ANSWER]


