What would the critical chisquare value be if my test involv
What would the critical chi-square value be if my test involves seven classes? Table 1. Critical chi-square values for a p-value of 0.05. Reject the null hypothesis if 2calc > 2crit.
df
2crit
1
3.84
2
5.99
3
7.81
4
9.49
5
11.07
6
12.59
7
14.07
8
15.51
9
16.92
10
18.31
11
19.68
12
21.03
13
22.36
14
23.68
15
25.00
16
26.30
17
27.59
18
28.87
19
30.14
20
31.41
| df | 2crit |
| 1 | 3.84 |
| 2 | 5.99 |
| 3 | 7.81 |
| 4 | 9.49 |
| 5 | 11.07 |
| 6 | 12.59 |
| 7 | 14.07 |
| 8 | 15.51 |
| 9 | 16.92 |
| 10 | 18.31 |
| 11 | 19.68 |
| 12 | 21.03 |
| 13 | 22.36 |
| 14 | 23.68 |
| 15 | 25.00 |
| 16 | 26.30 |
| 17 | 27.59 |
| 18 | 28.87 |
| 19 | 30.14 |
| 20 | 31.41 |
Solution
A statistical test that can test out ratios is the Chi-square or goodness of fit test
Degrees of freedom= n-1 where n is the number of the classes
The value for the test having seven classes will have 6 degrees of freedom.
The value of 6 df is 12.59.

