Show that varaXEaXEaX2 can be simplified to varaXa2varX Solu

Show that var(aX)=E(aX-E(aX))^2 can be simplified to var(aX)=a^2var(X) .

Solution

var(aX)=E(aX-E(aX))^2

Expand

(aX-E(aX))^2 = a2x2+2aXE(aX)-{E(aX)}2

= a2x2+2a2XE(X) - {aE(X)}2 Using property of Expectation

Thus

var(aX)=E(aX-E(aX))^2

=E(a2x2-2a2XE(X) + {aE(X)}2 )   

E(X) is a constant here also a is a constant, hence can be taken out

= a2E(X2) - 2a2E(X)E(X) +a2{E(X)}2 )   

Grouping II and III term

= a2E(X2) -a2{E(X)}2

Taking a square out

= a2(E(X2) -{E(X)}2)

= a2Var(X)

Show that var(aX)=E(aX-E(aX))^2 can be simplified to var(aX)=a^2var(X) .Solutionvar(aX)=E(aX-E(aX))^2 Expand (aX-E(aX))^2 = a2x2+2aXE(aX)-{E(aX)}2 = a2x2+2a2XE(

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site