Show that varaXEaXEaX2 can be simplified to varaXa2varX Solu
Show that var(aX)=E(aX-E(aX))^2 can be simplified to var(aX)=a^2var(X) .
Solution
var(aX)=E(aX-E(aX))^2
Expand
(aX-E(aX))^2 = a2x2+2aXE(aX)-{E(aX)}2
= a2x2+2a2XE(X) - {aE(X)}2 Using property of Expectation
Thus
var(aX)=E(aX-E(aX))^2
=E(a2x2-2a2XE(X) + {aE(X)}2 )
E(X) is a constant here also a is a constant, hence can be taken out
= a2E(X2) - 2a2E(X)E(X) +a2{E(X)}2 )
Grouping II and III term
= a2E(X2) -a2{E(X)}2
Taking a square out
= a2(E(X2) -{E(X)}2)
= a2Var(X)
