Solve the recurrence an 4 an 3 2an 2 4an 1 24an 0So
Solve the recurrence an + 4 + an + 3 - 2an + 2 + 4an + 1 - 24an = 0.
Solution
Let us consider a(n+4) +a(n+3) -2a(n+3) +4a(n+1) - 24an as a^4+a^3-2a^2+4a-24
= (a-2) (a+3) (a^2+4)
= a^4 + a^3 - 2 a^2 + 4 a - 24
=(-2 + a) (3 + a) (a^2 + 4)
Then the real roots are a = -3 or 2
