Prove that ac 3bd2 Solution6 ac 3bd2 3ad2 3bc2 ad bc2 0

Prove that (ac + 3bd)^2

Solution

6) . (ac + 3bd)^2 <= (a^2 +3b^2) (c^2 +3d^2)

(ac)^2 + (3bd)^2 +2ac(3bd) = (ac)^2 + (3bd)^2 + 3(ad)^2 + 3(bc)^2

now

6abcd < = 3(ad)^2 + 3(bc)^2

-6abcd > = -3(ad)^2 -3(bc)^2

(ad -bc)^2 > =0

ad >bc

(a2 + 3b2)(c2 + 3d2) = a2 (c2 + 3d2) + 3b2 (c2 + 3d2) =
= a2c2 + 3a2d2 + 3b2c2 +9b2d2 =
= a2c2 - 6abcd + 9b2d2 + 3a2d2 + 6abcd + 3b2c2 =
= (ac +3bd)2 + 3(ad - bc)2

now just keep (a2 + 3b2)(c2 + 3d2) = (ac +3bd)2 + 3(ad - bc)2

the inequality is (ac +3bd)2 <= (a2 + 3b2)(c2 + 3d2

(ac +3bd)2    <= (ac +3bd)2 + 3(ad - bc)2

by this we can easily say that on right hand side we have a term 3(ad -bc)^2 term extra , so this will add upto some value

hence proved

 Prove that (ac + 3bd)^2 Solution6) . (ac + 3bd)^2 <= (a^2 +3b^2) (c^2 +3d^2) (ac)^2 + (3bd)^2 +2ac(3bd) = (ac)^2 + (3bd)^2 + 3(ad)^2 + 3(bc)^2 now 6abcd <

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site