A closed frictionless pistoncylinder device containing 65 kg
Solution
1.)
Given mass of N2 = 65 Kg
mass of saturated vapour = 20 kg
quality of steam = Mg / ( Mf + Mg ) = 20 /65
x = 0.3
From steam tables saturated at P = 1084.6 KPa
T =105
vf = 0.001522
vg = 0.0221
hv = -61.24
hg = 87.35
V = vf + x ( Vg -Vf )
v = 0.001522 + 0.3 ( 0.0221 - 0.001522 )
v = 0.0076954
Volume V = M v = 65 * 0.0076954
V = 0.5 m3
2.)
Now the gas expands isothermally to pressure 500 KPa
at p = 500 Kpa and T = 105 C
interpolating table for T= 105
105 = 100 + x ( 120 - 100 )
x= 0.25
v2 = 0.05303 + 0.25 (0.06701 - 0.05303 )
v2 = 0.056525
h2 = 94.46 + 0.25 (118.12 - 94.46 )
h2 = 100.375
Volume V= Mv2 = 65 * 0.056525
V2 = 3.674 m3
Change in system volume = V2 - V1 = 3.674 - 0.5
Change in system volume = 3.174
3.)
For p= 1084.6
hv = -61.24
ha = hg = 87.35
x= 0.3
h1 = hv + x ( hg - hf )
h1 = -61.24 + 0.3 ( 87.35 - ( - 61.24 ) )
h1 = -16.663
h2 = 100.375
change in enthalapy = h2 - h1 = 100.375 - ( - 16.663 ) ) = 117.038
4.)
Now system undergoes constant pressure P= 500 Kpa
as it is compressed to original volume V = 0.5 m3
v3 = V/m = 0.5 / 65 = 0.0076954
v3 = 0.00769
At pressure = 500 KPa from steam tables saturated
interpolate for p = 500 in tables
500 = 360.8 + x ( 541.1 - 360.8 )
x=0.772
vf = 0.001343 + 0.772 ( 0.001393 - 0.001343)
vf = 0.0013816
vg = 0.06611 + 0.772 ( 0.04476 - 0.06611 )
vg = 0.0496
v = vf + x ( vg - vf )
0.00769 = 0.0013816 + x ( 0.0496 - 0.0013816 )
x = 0.1308
quality = 0.1308

