A certain placement test has scores centered around a mean o

A certain placement test has scores centered around a mean of 200 points, with a standard deviation of about 50 points. The distribution of scores is bell-shaped. The minimum is zero and maximum is 400. What is the approximate probability a randomly selected test-taker will get under a 300 on the test? b) over a 250? c) between a 50 and a 150?, d) no more than a 100. e) better than 150?, f) between 100 and 250., g) between 150 and 300?, and h) more than 200?

Solution

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    300      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus,          
          
z = (x - u) / s =    2      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   2   ) =    0.977249868 [answer]

***************

b)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    250      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1   ) =    0.158655254 [ANSWER]

******************

c)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    50      
x2 = upper bound =    150      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -3      
z2 = upper z score = (x2 - u) / s =    -1      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.001349898      
P(z < z2) =    0.158655254      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.157305356   [ANSWER]

******************

d)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    100      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus,          
          
z = (x - u) / s =    -2      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -2   ) =    0.022750132 [ANSWER]

********************

e)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    150      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus,          
          
z = (x - u) / s =    -1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   -1   ) =    0.841344746 [ANSWER]

*******************

f)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    100      
x2 = upper bound =    250      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2      
z2 = upper z score = (x2 - u) / s =    1      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.022750132      
P(z < z2) =    0.841344746      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.818594614   [ANSWER]

*******************

g)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    150      
x2 = upper bound =    300      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1      
z2 = upper z score = (x2 - u) / s =    2      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.158655254      
P(z < z2) =    0.977249868      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.818594614   [ANSWER]

*****************

h)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    200      
u = mean =    200      
          
s = standard deviation =    50      
          
Thus,          
          
z = (x - u) / s =    0      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0   ) =    0.5 [ANSWER]
  
  


  

A certain placement test has scores centered around a mean of 200 points, with a standard deviation of about 50 points. The distribution of scores is bell-shape
A certain placement test has scores centered around a mean of 200 points, with a standard deviation of about 50 points. The distribution of scores is bell-shape
A certain placement test has scores centered around a mean of 200 points, with a standard deviation of about 50 points. The distribution of scores is bell-shape

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site