Express the given product as a sum or difference only sines
Solution
cosAsinB=(1/2)[sin(A+B)-sin(A-B)]
cos(11/2)sin(/2)=(1/2)[sin(11/2 +/2) -sin(11/2 -/2))]
cos(11/2)sin(/2)=(1/2)[sin(12/2) -sin(10/2))]
cos(11/2)sin(/2)=(1/2)[sin(6) -sin(5))]

cosAsinB=(1/2)[sin(A+B)-sin(A-B)]
cos(11/2)sin(/2)=(1/2)[sin(11/2 +/2) -sin(11/2 -/2))]
cos(11/2)sin(/2)=(1/2)[sin(12/2) -sin(10/2))]
cos(11/2)sin(/2)=(1/2)[sin(6) -sin(5))]
