Compute the flux of the vector field f with rightarrow xzjw
Solution
Solution: Given F = xzj - xyk, x2 + y2 = 5, 0\\leq z \\leq 5
Here outward normal n = k, so F.n = -xy
So flux = \\int\\int_{S}F.nds
= \\int_{-\\sqrt{5}}^{\\sqrt{5}} \\int_{-\\sqrt{5-x2}}^{\\sqrt{5-x2}(-xy)dydx
=2x2 \\int_{0}^{\\sqrt{5}}\\int_{0}^{\\sqrt{5-x2}(-xy)dydx
=4 \\int_{0}^{\\sqrt{5}}[(-xy2/2)]0\\sqrt{5-x2}dx
=-2 \\int_{0}^{\\sqrt{5}}x(5-x2)dx
= 2 \\int_{0}^{\\sqrt{5}}(x3 -5x)dx
=2(x4 /4 - 5x2/2)_{0}^{\\sqrt{5}}
= 2(25/4 - 25/2)
= - 25/2
