Compute the flux of the vector field f with rightarrow xzjw


Compute the flux of the vector field f with rightarrow = xzjwith rightarrow - xyk with rightarrow through the open-top, outward-oriented cylinder S. x^2 + y^2 = 5, 0 lessthanorequalto z lessthanorequalto 3.

Solution

Solution: Given F = xzj - xyk, x2 + y2 = 5, 0\\leq z \\leq 5

Here outward normal n = k, so F.n = -xy

So flux = \\int\\int_{S}F.nds

= \\int_{-\\sqrt{5}}^{\\sqrt{5}} \\int_{-\\sqrt{5-x2}}^{\\sqrt{5-x2}(-xy)dydx

=2x2 \\int_{0}^{\\sqrt{5}}\\int_{0}^{\\sqrt{5-x2}(-xy)dydx

=4 \\int_{0}^{\\sqrt{5}}[(-xy2/2)]0\\sqrt{5-x2}dx

=-2 \\int_{0}^{\\sqrt{5}}x(5-x2)dx

= 2 \\int_{0}^{\\sqrt{5}}(x3 -5x)dx

=2(x4 /4 - 5x2/2)_{0}^{\\sqrt{5}}

= 2(25/4 - 25/2)

= - 25/2

 Compute the flux of the vector field f with rightarrow = xzjwith rightarrow - xyk with rightarrow through the open-top, outward-oriented cylinder S. x^2 + y^2

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site