A Fortune study found that the variance in the number of veh

A Fortune study found that the variance in the number of vehicles owned or leased by subscribers to Fortune magazine is 0 .94. Assume a sample of 12 subscribers to another magazine provided the following data on the number of vehicles owned or leased: 2, 1, 2, 0, 3, 2, 2, 1, 2, 1, 0, 1. a. Compute the sample variance in the number of vehicles owned or leased by the 12 subscriber s. b. Test the hypothesis: to determine whether the variance in the number of vehicles owned or leased by subscribers of the other magazine differs from for Fortune . At a 0.05 level of significance, what is your conclusion?

Solution

Getting the mean, X,          
          
X = Sum(x) / n          
Sum(x) =    17      
As n =    12      
Thus,          
X =    1.416666667      
          
Setting up tables,          
x   x - X   (x - X)^2  
2   0.583333333   0.340277778  
1   -0.416666667   0.173611111  
2   0.583333333   0.340277778  
0   -1.416666667   2.006944444  
3   1.583333333   2.506944444  
2   0.583333333   0.340277778  
2   0.583333333   0.340277778  
1   -0.416666667   0.173611111  
2   0.583333333   0.340277778  
1   -0.416666667   0.173611111  
0   -1.416666667   2.006944444  
1   -0.416666667   0.173611111  
          
Thus, Sum(x - X)^2 =    8.916666667      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    12      
          
s^2 =    0.810606061   [answer, sample variance]  
*****************************************          
Thus,          
          
s =    0.900336637

Formulating the null and alternative hypotheses,              
              
Ho:   sigma   =   0.94  
Ha:    sigma   =/   0.94  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical chi^2, as alpha =    0.05   ,      
alpha/2 =    0.025          
df = N - 1 =    11          
chi^2 (crit) =    3.815748252   and   21.92004926  
              
Getting the test statistic, as              
s = sample standard deviation =    0.900336637          
sigmao = hypothesized standard deviation =    0.94          
n = sample size =    12          
              
              
Thus, chi^2 = (N - 1)(s/sigmao)^2 =    10.09129319          
              
As chi^2 is between the two critical values, we FAIL TO REJECT THE NULL HYPOTHESIS.              

Thus, there is no significant evidence that the variance in the number of vehicles owned or leased by subscribers of the other magazine differs from for Fortune. [CONCLUSION]

A Fortune study found that the variance in the number of vehicles owned or leased by subscribers to Fortune magazine is 0 .94. Assume a sample of 12 subscribers
A Fortune study found that the variance in the number of vehicles owned or leased by subscribers to Fortune magazine is 0 .94. Assume a sample of 12 subscribers

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site