Given cossqrt558 and 2
Given cos()=sqrt(55)/8 and /2<< and cos()=sqrt(32)/9 and is in quadrant IV. Use sum and difference formulas to find the following:
Note: You are not allowed to use decimals in your answer.
sin(+)=
Solution
cos alpha= -sqrt55/8
here adjacent = sqrt 55 and hypotenuse=8
Therefore opposite= sqrt(64-55)=3
Sin alpha= 3/8
cos beta= sqrt 32/9
adjacent= sqrt 32 and hypotenuse=9
Therefore opposite= 7
sin beta=7/9
sin (alpha + beta)= sin alpha cos beta + cos alpha sin beta
= (3/8)(sqrt32/9)+ (-sqrt 55/8)(-7/9)
= (3sqrt32 + 7sqrt 55)/72
