Let X be an exponential random variable with parameter lambd

Let X be an exponential random variable with parameter lambda(just use \"a\" to represent it).

(a) For d >0 and k a nonnegative integer. Find P[kd

(b) Segment the positive real line into four equiprobable disjoint intervals.

Solution

As here parameter =2

f(x) = 2e-2x, x>-0, 0 otherwise.

P(Kd

= -e-2x

Substitute limits

Reqd prob = e-2d(k+1)-e-2kd

-----------------------------------------------------------------------------------------

Consider P(xc) =0.25

Then a, b, c, partition the intervals into 4 equiprobable parts

P(xf(x) dx from 0 to a = -e-2c+1 = 0.25

or 0.75 = e-2a

a=0.1438

To find b:

Using the same process as above e-2a-e-2b = 0.75-e-2b = 0.25

b = 0.3466

To find c:

Using the same process as above e-2b-e-2c = 0.50-e-2c = 0.25

c = 0.6931

Let X be an exponential random variable with parameter lambda(just use \

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site