Let X be an exponential random variable with parameter lambd
Let X be an exponential random variable with parameter lambda(just use \"a\" to represent it).
(a) For d >0 and k a nonnegative integer. Find P[kd
(b) Segment the positive real line into four equiprobable disjoint intervals.
Solution
As here parameter =2
f(x) = 2e-2x, x>-0, 0 otherwise.
P(Kd
= -e-2x
Substitute limits
Reqd prob = e-2d(k+1)-e-2kd
-----------------------------------------------------------------------------------------
Consider P(xc) =0.25
Then a, b, c, partition the intervals into 4 equiprobable parts
P(xf(x) dx from 0 to a = -e-2c+1 = 0.25
or 0.75 = e-2a
a=0.1438
To find b:
Using the same process as above e-2a-e-2b = 0.75-e-2b = 0.25
b = 0.3466
To find c:
Using the same process as above e-2b-e-2c = 0.50-e-2c = 0.25
c = 0.6931
