please help will rate thank you The average amount parents s

please help will rate thank you

The average amount parents spent per child on back-to-school items in August 2012 was $744 with a standard deviation of $265. Assume the amount spent on back-to-school items is normally distributed.

A) Find the probability the amount spent on a randomly selected child is greater than $313.

B) Find the probability the amount spent on a randomly selected child is less than $600 or greater than or equal to $950.

C) Find the probability the amount spent on a randomly selected child is less than or equal to $768.

D) Find the probability the amount spent on a randomly selected child is greater than $177 and less than $787.

E) The probability is 0.42 that the amount spent on a randomly selected child will be between what two values equidistant from the mean? Find the lower endpoint and upper endpoint.

F) The probability is 0.77 that the amount spent on a randomly selected child is at most what value?

G) The probability is 0.86 that the amount spent on a randomly selected child is no less than what value?

Solution

A)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    313      
u = mean =    744      
          
s = standard deviation =    265      
          
Thus,          
          
z = (x - u) / s =    -1.626415094      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   -1.626415094   ) =    0.948069309 [ANSWER]

******************

B)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    600      
x2 = upper bound =    950      
u = mean =    744      
          
s = standard deviation =    265      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.543396226      
z2 = upper z score = (x2 - u) / s =    0.777358491      
          
Using table/technology, the left tailed areas between these z scores is          
          
          
P(z < z2) =    0.781526352      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.781526352      

Thus, those outside this interval is the complement = 0.218473648   [ANSWER]

***********************

C)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    768      
u = mean =    744      
          
s = standard deviation =    265      
          
Thus,          
          
z = (x - u) / s =    0.090566038      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   0.090566038   ) =    0.536081291 [ANSWER]

***************************

D)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    177      
x2 = upper bound =    787      
u = mean =    744      
          
s = standard deviation =    265      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -2.139622642      
z2 = upper z score = (x2 - u) / s =    0.162264151      
          
Using table/technology, the left tailed areas between these z scores is          
          
          
P(z < z2) =    0.564451078      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.564451078   [answer]  

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

please help will rate thank you The average amount parents spent per child on back-to-school items in August 2012 was $744 with a standard deviation of $265. As
please help will rate thank you The average amount parents spent per child on back-to-school items in August 2012 was $744 with a standard deviation of $265. As

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site