In Exercises 23 to 26 follow the technique outlined in the t
Solution
23).
z^5 = e^((pi/2 + 2k pi) i ), k=0,1,2,3,4, so
z = e^(pi i /10), e^5pi i /10), e^(9pi i /10), e^(13pi i/10), e^(17pi i/10).
In trigonometric form:
z = cos(pi/10) + i sin(pi/10)
z = cos(5pi/10) + i sin(5pi/10) = cos(pi/2) + i sin(pi/2) = i
z = cos(9pi/10) + i sin(9pi/10) = -cos(pi/10) + i sin(pi/10)
z = cos(13pi/10) + i sin(13pi/10) = -cos(3pi/10) - i sin(3pi/10)
z = cos(17pi/10) + i sin(17pi/10) = cos(3pi/10) - i sin(3pi/10)
Note these can be expressed as radicals. For example, by starting with cos(pi/5) = (1/4)(1+sqrt(5)) and sin(pi/5) = (1/4)sqrt(10-2sqrt(5)) and using half-angle formulas.
Note2: pi/10 = 18 degrees and 3pi/10 = 54 degrees, angles associated with the regular decagon and regular pentagon.
24).(z+1)^4 = 1-i
1-i = 2^1/2 * (cos (-pi/4) + i*sin(-pi/4)) then i found z= [2^(1/2*1/4) * (cos (-pi/4) + i*sin (-pi/4) )^1/4] -1 then using de moivre\'s thrm z= {2^3/4 *(cos [pi/16 +2k*pi/16] - i*sin[pi/16 + 2k*pi/16])}-1 ; k=0,1,2,3
24).
ubtract 1 from both sides of the equation :
z8 = -1
z = 8th root of (-1)
The equation has no real solutions. It has 8 imaginary, or complex solutions.
z= 0.9239 + 0.3827 i
z= 0.3827 + 0.9239 i
z= -0.3827 + 0.9239 i
z= -0.9239 + 0.3827 i
z= -0.9239 - 0.3827 i
z= -0.3827 - 0.9239 i
z= 0.3827 - 0.9239 i
z= 0.9239 - 0.3827 i
26).
z^3=8
Factoring: z3-8
Theory : A difference of two perfect cubes, a3 - b3 can be factored into
(a-b) • (a2 +ab +b2)
=> (z - 2) • (z2 + 2z + 4) =0
