The weight of a small Starbucks coffee is a normally distrib
The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 340 grams and a standard deviation of 11 grams. Find the weight that corresponds to each event. (Use Excel or Appendix C for calculation of z-value. Round your final answers to 2 decimal places.)
| The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 340 grams and a standard deviation of 11 grams. Find the weight that corresponds to each event. (Use Excel or Appendix C for calculation of z-value. Round your final answers to 2 decimal places.) |
Solution
(a) Highest 30 percent
P(X>x)=0.3
--> P((X-mean)/s <(x-340)/11) =1-0.3=0.7
--> P(Z<(x-340)/11) =0.7
--> (x-340)/11 =0.52 (from standard normal table)
So x= 340+0.52*11=345.72
---------------------------------------------------------------------------------------------------------
(b)Middle 70 percent
P(X<x)=(1-0.7)/2 =0.15
--> P(Z<(x-340)/11) =0.15
--> (x-340)/11= -1.04 (from standard normal table)
So x= 340-1.04*11=328.56
P(X<x)=0.85
--> P(Z<(x-340)/11) =0.85
--> (x-340)/11= 1.04 (from standard normal table)
So x= 340+1.04*11=351.44
---------------------------------------------------------------------------------------------------------
(c)Highest 90 percent
P(X<x)=0.9
--> P(Z<(x-340)/11) =0.9
--> (x-340)/11= 1.28 (from standard normal table)
So x= 340+1.28*11=354.08
---------------------------------------------------------------------------------------------------------
(d)Lowest 20 percent
P(X<x)=0.2
--> P(Z<(x-340)/11) =0.2
--> (x-340)/11 = -0.84 (from standard normal table)
So x= 340-0.84*11=330.76

