w 120 lbft W 151 lb I1 4 ft I2 4 ft b 05 ft h 08 ft M
Solution
Data available,
w = 120 lb/ft, W = 151 lb, l1 = l2 = 4 ft, M = 150 lb/ft
Applying static equlibrium conditions,
sigma Fh = 0
Va = 0 ------- horizontal force at A
sigma Fv = Ra + Rb - wL - W = 0
Ra + Rb = wL + W = 120 * 4 + 151 = 631 ---- eqn1
Taking moment about A,
sigma Ma = 0
Rb * L1 - wL1^2 / 2 - W*(L1+L2/2) = 0
Rb = [ wL1^2 / 2 + W*(L1+L2/2) ] / L1
Rb = (960 + 906)/4 = 466.5 lb -------- vertical force at B
Ra = 631 - 466.5 = 164.5 lb -------- vertical force at A
Bending moment: (+CCW)
Ma = 0
Mb = wL1^2 / 2 - Ra * L1 = 120*16 / 2 - 164.5 * 4 = 960 - 658 = 302 lb-ft
Mc = wL1( L1/2 + L2/2) - Ra (L1+L2/2) - Rb * L2/2
Mc = 120*4 (2+2) - 164.5 * (4+2) - 466.5 * 2 =1920 - 987 - 933 = 0
Md = -150 lb-ft
Me range is 0 to -150 lb-ft (CW)
Shear force:(+ upward)
Ra = 164.5 lb
RL/2 = 164.5 - 120*4*2 = 164.5 - 960 = - 800 lb
Rb = -800 + 466.5 = -333.5 lb
Rc = -333.5 + 150 = -183.5 lb
Rd = -183.5 lb
Maximum shear force at L1/2, 800 lf (downward)
Location of max bending moment at B i.e L1/2 = 2 ft from A
Max bending moment at B, 302 lb-ft
Max shear stress at L1 / 2 or 2 ft from A, which is 800 / 2 = 400 lb/ft2
Using the Max shear stress theory, tau max = sigma max / 2,
so sigma max = tau max * 2 = 400 * 2 = 800 lb / ft2

