Math 3470 Introductory Probability and Statistics Suppose th
Solution
a) P(|z|<2)
= P(-2<z<2)
= P(z<2) - P(z<-2)
Using z table from the below link, we can plug in the values
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
= 0.9772 - 0.0228
= 0.9544
b) P(|z|>2)
= 1 - P(-2<z<2)
= 1 - (P(z<2) - P(z<-2))
Using z table from the below link, we can plug in the values
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
= 1 - (0.9772 - 0.0228)
= 0.04566
c) P(Z > x) = 0.05
1 - P(Z<x) = 0.05
P(Z<x) = 0.95
Using z table from the below link, we can plug in the values
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
x = 1.65
Question 2
a) Mean = 5, Deviation = 10
Z1 = (X1 - mean)/sigma = (-20-5)/10 = -2.5
Z2 = (X2 - mean)/sigma = (15-5)/10 = 1
P(Z1<x<Z2) = P(-2.5<x<1) = P(x<1) - P(x<-2.5)
Using z table from the below link, we can plug in the values
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
=> 0.8413 - 0.062
=> 0.7793
b) P(-12.4 < X-5 < 12.4)
adding 5 both left and right sides we get
P(-7.4<X<17.4)
Z1 = (X1 - mean)/sigma = (-7.4-5)/10 = -1.24
Z2 = (X2 - mean)/sigma = (17.4-5)/10 = 1.24
P(Z1<x<Z2) = P(-1.24<x<1.24) = P(x<1.24) - P(x<-1.24)
Using z table from the below link, we can plug in the values
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
=> 0.895 - 0.013
=> 0.882
=> 0.7793

