Given sin Asqrt 22 with A terminating in QII and cos B23 wit
Given sin A=sqrt 2/2 with A terminating in QII and cos B=2/3 with B terminating in QIV. Calculate cos( A-B). Use exact values.
Solution
sinA=sqrt2/2
IN second quadrant sine is positive and cos is negative
SInA=sqrt2/2
opposite=sqrt2
hypotenuse=2
adjacent=sqrt(4-2)=sqrt2
Therefore cos A=-sqrt2/2
Cos B=2/3
Adjacent=2
Hypotenuse=3
Opposite=sqrt(9-4)=sqrt5
Sin B=-sqrt5/3
cos(A-B)=cos A cos B+sinA sinG = (-sqrt2/2)(2/3)+(sqrt2/2)(-sqrt5/3)
= (-2sqrt2/6)-(sqrt10/6)
= (-2sqrt2-sqrt10)/6
