laplace 9y 6y y 0 y03 y01SolutionWe begin by applying the
laplace 9y\'\' -6y\' +y = 0 ; y(0)=3, y\'(0)=1
Solution
We begin by applying the Laplace transform to both sides. By linearity of the Laplace transform, we have
9L{y\'\'} - 6 L{y\'} + L{y} = 0
9(s2L{y} - 2s - 1) - 6 (sL{y} - 2) + L{y} =0
9s2L{y} - 18s - 9 -6sL{y} +12 + L{y} =0
L{y}(9s2 - 6s + 1) = 18s - 3
L{y}= 18s - 3/(9s2 - 6s + 1)
To find y, we need to take the Inverse Laplace Transform of the right hand side.
18s -3/(3s-1)^2 = A/(3s-1)^2
A = 18s -3
Let s= 1/3 then A = 3
L{y} = 3/(3s-1)^2
y = L-13/(3s-1)^2
