solve the initial value problem y y 2y x sinx y0 1920 y
solve the initial value problem y\'\' + y\' -2y = x + sinx , y(0) = 19/20, y\' (0) =0
Solution
First we solve the homogeneous ode
y\'\'+y\'-2y=0
Let, y=exp(kx),substituting gives
k^2+k-2=0
k^2+2k-k-2=0
k=-2,1
Hence solution to homogeneous ode is
y=A e^x+B e^(-2x)
For complementary solution let the guess be:
yp=Ax+B+C sin(x)+D cos(x)
Substituting gives
-C sin(x)-D cos(x)+A+Ccos(x)-D sin(x)-2Ax-2B-2C sin(x)-2D cos(x)=x +sin(x)
Comparing coefficients we get
-3C-D=1
C-3D=0,C=3D
Substituting gives
-9D-D=1
D=-1/10,C=-3/10
-2A=1,hence, A=-1/2
A=2B ,hence, B=-1/4
Hence, y=A e^x+B e^(-2x)-x/2-1/4-sin(x)/10-3cos(x)/10
y(0)=19/20=A+B-1/4-3/10=A+B-11/20
A+B=30/20=3/2
y\'(0)=0=A-2B-1/2-1/10
A-2B=3/5
Solving gives
A=19/15,B=1/6
