Consider two matrices a b compute the matrix product a b and
Solution
(a) given that matrix A,B.
find A*B,for multiplication of two matrices we take first row of first matrix and first colomn of second matrix.
A*B=matrix of [(0.-1 -1.0 1.3) (-1.0 0.-1 -1.0) (1.3 -1.0 0.-1)]
=[(0 0 3) (0 0 0) (3 0 0)] this is product of A*B
(B)given that C=((A-I)*(B+I))^-1
first we have to find the matrix C
A-I=[(0 -1 1) (-1 0 -1) (1 -1 0)]-[(1 0 0) (0 1 0) (0 0 1)] [HERE I=(1 0 0) (0 1 0) (0 0 1)]
=[(0-1 -1 0 1-0) (-1 -0 0-1 --1 -0) (1-0 -1 -0 0-1)]
A-I =[(-1 -1 1) (-1 -1 -1) (1 -1 -1)]
B+I=[(-1 0 3) (0 -1 0) (3 0 -1)]-[(1 0 0) (0 1 0) (0 0 1)]
=[(0 0 3) (0 0 0) (3 0 0)]
now C=((A-I)*(B+I)
=[(-1 -1 1) (-1 -1 -1) (1 -1 -1)]*[(0 0 3) (0 0 0) (3 0 0)]
=[{0 0 3) (0 0 0) (3 0 0)]
now find the inverse of C.
we have a formula for finding inverse of a matrix, c^-1=1/det(c)*(adj(C))
now find adj of C,it means transfose of matrix C.
C^T=[{0 0 3) (0 0 0) (3 0 0)]=adj(c)
now det(C)=[(0(0.0)-(0.0)+0(0.0)-(3.0)+3(0.0)-(3.0)]
=0+0+0
=0
C^-1=I/det(C)*adj(c)
=1/0*[{0 0 3) (0 0 0) (3 0 0)]
=0
