A 2 mm diameter spherical air bubble is suspended in an insu
Solution
Initial radius r = dia/2 = 2/2 = 1 mm = 0.001 m
Final radius R = r + 90/100*r = 1.9*r = 0.0019 m
Initial volume v = 4/3*pi*r^3 = 4/3*3.14*0.001^3 = 4.1866*10^-9 m^3
Final volume V = 4/3*pi*R^3 = 4/3*3.14*0.0019^3 = 2.8716*10^-8 m^3
Initial pressure difference dp = 2*sigma/r = 2*0.07/0.001 = 140 Pa = 0.14 kPa
Initial pressure in bubble p = 100 + 0.14 = 100.14 kPa
Initial Density = p / (RT) = 100.14*10^3 / (287*300) = 1.163 kg/m^3
Final pressure difference dP = 2*sigma/R = 2*0.07/0.0019 = 73.68 Pa = 0.07368 kPa
Final pressure in bubble P = 100 + 0.07368 = 100.07368 kPa
a)
Mass of the bubble = density*volume = 1.163*4.1866*10^-9 = 4.869*10^-9 kg
b)
Final density = mass / volume = 4.869*10^-9 / (2.8716*10^-8) = 0.1696 kg/m^3
P/RT = 0.1696
100.07368*10^3 / (287*T) = 0.1696
T = 2056 K
c)
For adibatic expansion, work done = (P2V2 - P1V1) / (n-1)
= (100.07368*2.8716*10^-8 - 100.14*4.1866*10^-9) / (1.4-1)
= 6.136*10^-6 kJ
d)
Q = m*Cp*(T2 - T1)
= 4.869*10^-9 * 1.005 * (2056 - 300)
= 8.593*10^-6 kJ
